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Abstract

These notes are a review of some aspects and basic principles of 2-dimensional

conformal field theory from the perspective of the conformal bootstrap. We discuss

the Virasoro algebra and its representations, the constraints that conformal symmetry

puts on CFT correlators, and how to use crossing symmetry to solve 2D CFTs.
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1 MOTIVATION AND BOOTSTRAP PROPAGANDA

1 Motivation and Bootstrap Propaganda

1.1 Intentionally Cryptic Prologue

You are lost at sea. Let h(x) denote the height of the water above sea level at your location

x on the Earth’s surface. The heights h(x) and h(y) are highly correlated whenever x and

y are so close together that they lie on the same wave. The average value of their product,

〈h(x)h(y)〉, is called a correlator : it is large when |x− y| is small, and it falls to zero when

|x − y| is large. You can predict the correlator if you know something about either the

dynamics of ocean waves or the symmetries underlying their shapes. The former involves

tracking your boat’s motion through the water and understanding how its height will change

on average when you move from x to y: this is hard. The latter involves estimating h(y)

from h(x) based on the average size, shape, and distribution of waves: this is easy.

1.2 The Bootstrap Approach

Definition 1.1 (CFT). A conformal field theory (CFT) consists of a spectrum and a

set of correlators, subject to certain symmetry assumptions and consistency conditions.

To define a CFT is to give data that, at least in principle, uniquely specify its spectrum and

correlators; to solve a CFT is to actually compute its spectrum and correlators.

The spectrum S is a set of numbers that characterizes the structure of the Hilbert space

HCFT of quantum states: we think of S as a set of energy levels. The states in |ψ〉 ∈ HCFT

can, for now, be thought of as particles living on some surface. In QFT, quantum states live

on constant-time slices of a spacetime, and in Euclidean signature these can be anything,

including a sphere surrounding any point x. Since the theory is scale-invariant, we can shrink

the sphere down to a point. In this way we associate to each state |ψ〉 an object Oψ(x) at

each x, and the collection of these objects as x varies is the field associated to |ψ〉. This is

the state-field correspondence: it is one of the central tenets of CFT.

To each set of N fields Oi(xi) we associate a number called their N-point correlator,

GN(x1, ..., xN) =

〈
N∏
i=1

Oi(xi)

〉
∈ C. (1.1)

These functions describe the degree of correlation between the fields Oi; in other words,

GN is the probability amplitude for N particles to interact at points xi. The notation

above is purely formal, and is meant to convey only that correlators depend linearly on the

fields. Strictly speaking, one does not need to define fields at all: there are only correlators.

Nevertheless, it is useful to think of the Oi(x) as linear operators acting on HCFT, and of

their correlators as vacuum expectation values: GN(x1, ..., xN) = 〈0|O1(x1) · · · ON(xN)|0〉.
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1.2 The Bootstrap Approach 1 MOTIVATION AND BOOTSTRAP PROPAGANDA

Symmetry. In any quantum theory, the Hilbert space H of states is a direct sum (counted

with multiplicity) of irreducible unitary representations R of its symmetry algebra:

H =
⊕
R

mRR, mR ∈ N, R irreducible. (1.2)

(This is axiomatic: We specify the symmetries by choosing a Lie algebra, and we implement

those symmetries by acting unitarily on the states inH. This defines a unitary representation

of the algebra, and all representations decompose into direct sums of irreducibles.)

In 2D CFT, conformal symmetry will be encoded in (two copies of) the Virasoro algebra.

As we will see, conformal symmetry not only structures the Hilbert space and tells us about

the spectrum, but also plays an important role in tightly constraining the correlators.

Consistency. We adopt two additional axioms to be satisfied by the correlators:

1. Correlators are commutative, e.g. 〈O1(x1)O2(x2)〉 = 〈O2(x2)O1(x1)〉.

2. There exists an operator product expansion (OPE):

Oi(x1)Oj(x2) =
∑
k

Ck
ij(x1, x2)Ok(x2). (1.3)

The complex-valued functions Ck
ij(x1, x2) are called OPE coefficients, and they can

be singular as x1 −→ x2. The sum over k runs over a basis of the CFT Hilbert space,

and the sum is required to converge when x1, x2 are sufficiently close together.1

The OPE is extraordinarily powerful: it reduces N -point functions to sums of (N − 1)-point

functions. Since (as we shall show) conformal symmetry fully fixes all 2-point functions,

repeated use of the OPE fully determines all of the correlators, up to the Ck
ij(x1, x2). In fact,

conformal symmetry also fixes the (x1, x2)-dependence of these functions, leaving only their

normalization undetermined. So all that remains is to find the constants Ck
ij.

Now, the commutativity axiom implies that the OPE is commutative and associative.

Through (1.3), these conditions encode equations that relate the OPE coefficients to each

other. There are sometimes enough such relations to uniquely determine all of the Ck
ij, and

therefore to solve the CFT. The art of actually doing this is the conformal bootstrap.

Advantages of the bootstrap. The bootstrap embraces an austere and elegant vision

of what a CFT is. Only “experimental” data—energy levels and amplitudes—is necessary

to define it, and the dream is that this data can be computed from the mere fact that the

theory is self-consistent. No Lagrangian is required: one may well exist, but the bootstrap

does not care about it. One does not even need physical fields, dynamics, a Hamiltonian, or

1As x1 approaches x2, we probe deeper into the UV. A CFT has no problem doing this, and the expansion
is exact. But in ordinary QFTs, a UV cutoff prevents OPEs from being quite as precise or useful.
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1.3 Outline of These Notes 2 REPRESENTATIONS OF THE VIRASORO ALGEBRA

a phase space; moreover, path integrals and canonical quantization are unnecessary because

the theory is already quantum. In practice, many of these structures often appear naturally

and are even quite useful. The point is just that a 2D CFT does not rely, ontologically, on

any of them: its heart and soul lies rather in its symmetries.

1.3 Outline of These Notes

In the next two sections, I will flesh out the theory whose skeleton has just haunted us above.

And in the last section, I will show how to use the bootstrap to solve 2D CFTs.

• Section 1: Introduction, motivation, and the basic idea of the conformal bootstrap,

including a sketch of the data that defines a CFT and the tools needed to solve it.

• Section 2: Conformal transformations in 2 dimensions, the Virasoro algebra, the

formal structure of the 2D CFT Hilbert space, and several kinds of CFTs.

• Section 3: Radial quantization and the operator-state correspondence, conformal

fields and their transformation properties, the stress tensor, and correlators.

• Section 4: How to use the OPE to decompose CFT correlators into conformal blocks;

and how to use crossing symmetry to bootstrap your way to victory.

These notes are based heavily on Sylvain Ribault’s beautiful review [1] and “minimal” lecture

notes [2]. Other excellent sources include the Big Yellow Book [3] of di Francesco, Mathieu,

and Senechal, and the lecture notes of Paul Ginsparg [4] and Xi Yin [5].

2 Representations of the Virasoro Algebra

2.1 Conformal Transformations

It is a standard fact from complex analysis that the only conformal (angle-preserving)

transformations of the extended complex plane Ĉ = C ∪ {∞} are fractional-linear:

f(z) =
az + b

cz + d
, ad− bc 6= 0. (2.1)

The group of these transformations is called the Möbius or global conformal group

PSL(2,C). It is generated by translations, rotations, dilations, and inversions:

ftr(z) = z + a, frot(z) = eiθz, fdil(z) = cz, finv(z) =
1

z
. (2.2)

The global conformal group enlarges of the group of rigid transformations of C (that is, the

translations and rotations) by adding, crucially, scale transformations, as well as maps that

turn the complex plane “inside out.” Here is a fun fact: PSL(2,C) = SO0(3, 1).
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2.2 The Virasoro Algebra 2 REPRESENTATIONS OF THE VIRASORO ALGEBRA

In fact, every holomorphic function z 7→ f(z) is angle-preserving. But if f is not Möbius,

then it cannot be one-to-one and must have singularities: it is only locally conformal.2

Locally, every meromorphic function admits a Laurent expansion f(z) =
∑

n∈Z anz
n, so it is

linearly generated by the zn. Accordingly, the infinite-dimensional algebra of local conformal

transformations—called the Witt algebra—is infinitesimally generated by similar objects.

Its generators, denoted by `n, satisfy the following commutation relations:

`n = −zn+1 ∂

∂z
=⇒ [`n, `m] = (n−m)`n+m, n ∈ Z. (2.3)

The subalgebra PSL(2,C) of global conformal transformations is generated by the three `n
with n ∈ {0,±1}. The rest of the generators describe local conformal transformations.

2.2 The Virasoro Algebra

We shall now upgrade the Witt algebra, which acts on the geometry, to the true symmetry

algebra of the CFT, which acts on its Hilbert space. For subtle reasons arising from the fact

that the Hilbert space is complex and projective, we need to complexify and centrally extend

the Witt algebra.3 The complexified Witt algebra has a complex basis (`n, `m) that consists

of two identical and mutually commuting copies of the Witt algebra. The `n generate the

“left-moving” or “chiral” or “holomorphic” conformal transformations, and the `m generate

the “right-moving” or “anti-chiral” or “anti-holomorphic” ones.4

The unique central extension of the Witt algebra is called the Virasoro algebra. Its

generators, denoted by Ln, satisfy the following modified commutation relations:

[Ln, Lm] = (n−m)Ln+m +
c

12
n
(
n2 − 1

)
δn,−m, c ∈ C. (2.4)

The constant c is called the central charge. It characterizes the CFT: roughly speaking,

it measures the number of degrees of freedom in the theory. Note that c does not affect the

generators of the global conformal group; and when c = 0, (2.4) is just the Witt algebra.

And so, to summarize: the symmetry algebra vir× vir of a 2D CFT is the direct product

of two copies of the Virasoro algebra. It is generated by (Ln, Lm) for n,m ∈ Z, where both

the Ln and the Lm satisfy the algebra (2.4) in addition to [Ln, Lm] = 0.5 The Hilbert space

HCFT is a direct sum of irreducible unitary representations of this algebra.

2We can interpret a singularity at z0 as indicating the nontrivial transformation of fields there. In the
vacuum state |0〉, we can assume that a trivial field called the identity field 1 = O0 lives at z0, which
becomes nontrivial after a local conformal transformation is applied. Thus, more generally, global conformal
transformations move fields around, while local conformal transformations also modify them.

3See this StackExchange post for a beautiful explanation of why central extensions are necessary.
4Even though the complexified Witt algebra acts on the complexified complex plane C2, we will demand

that the correlators continue to be functions on C. Thus we will admit
√
|z| =

√
zz, but not

√
z.

5If we assume invariance under the “time reversal” z 7→ −z, then the central charges agree: c = c.
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2.3 The CFT Hilbert Space 2 REPRESENTATIONS OF THE VIRASORO ALGEBRA

The global Virasoro generators have direct physical interpretations, and we postulate

that they play important roles in the quantum theory we are about to develop:

• L0 + L0 generates dilations. It is the Hamiltonian operator; it measures energy.

• L0 − L0 generates rotations. It is the angular momentum; it measures spin.

• L−1 and L−1 generate translations in space. They are the left and right momenta.

• L1 and L1 generate the so-called special conformal transformations, which are related

to inversions. They play the role of the left and right boost operators.

In order to ensure that L0 + L0 behaves like a Hamiltonian, we will require that both L0

and L0 are (simultaneously) diagonalizable, and that L0 + L0 is bounded from below. This

interpretation suggests that the radial coordinate |z| should play the role of time; indeed,

this is the key idea behind radial quantization, which we will discuss below.

As we are about to see, the other Virasoro generators behave somewhat like the creation

and annihilation operators familiar from the quantum harmonic oscillator. The L+n are

“lowering” operators, and we require that they all annihilate the vacuum state. Meanwhile,

the L−n are “raising” operators, and they create excitations with higher energy.6

In view of the fact that the symmetry algebra splits into two pieces, it is natural to

assume (though it does not follow automatically!) that the irreducible representations in the

CFT Hilbert space fall apart into left-moving and right-moving factors:

HCFT =
⊕
R,R′

mR,R′

(
R⊗R′

)
, R,R′ irreducible. (2.5)

This leads to holomorphic factorization, the statement that quantities associated to

irreducible representations R⊗R′ take the form f(z)f(z) for functions f , f .

2.3 The CFT Hilbert Space

The operators L0 and L0 are special. They commute and are simultaneously diagonalizable,

and we can gain a detailed understanding of the CFT Hilbert space by describing a basis for

HCFT given by their eigenvectors. We have special names for their eigenvalues:

Operator Eigenvalue Terminology What happens if it’s zero?

(L0, L0) (h, h) Conformal weights |ψ〉 is the vacuum state |0〉
H = L0 + L0 ∆ = h+ h Conformal dimension |ψ〉 is the vacuum state |0〉
J = L0 − L0 ` = h− h Angular momentum |ψ〉 is scalar or diagonal

2L0 τ = ∆− ` Twist |ψ〉 is chiral or holomorphic

6We have not yet defined an inner product on HCFT. When we do so, it will respect L†n = L−n.
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2.3 The CFT Hilbert Space 2 REPRESENTATIONS OF THE VIRASORO ALGEBRA

Let |ψ〉 ∈ HCFT be an eigenvector of L0 with weight h. Using the Virasoro algebra, we

find that the state Ln |ψ〉 is also an L0-eigenvector, with eigenvalue shifted by n:

L0 |ψ〉 = h |ψ〉 =⇒ L0

(
Ln |ψ〉

)
= (LnL0 − nLn) |ψ〉 = (h− n)

(
Ln |ψ〉

)
. (2.6)

This calculation shows that Ln lowers the energy of a state by n. Since the Hamiltonian

is bounded from below, one cannot lower the energy indefinitely: there must exist an L0-

eigenstate |ψ〉 that is annihilated by Ln for all n > 0. Any state |ψ〉 ∈ HCFT for which

L0 |ψ〉 = h |ψ〉 , L0 |ψ〉 = h |ψ〉 , and Ln |ψ〉 = Ln |ψ〉 = 0 for all n > 0 (2.7)

is called a primary or highest-weight state. (Somewhat confusingly, primaries are the

states of lowest energy—lowest conformal weight—in a given irreducible representation.)

The calculation (2.6) also shows that one can increase the weight of a primary state |ψ〉
by acting on it with an arbitrary string of Virasoro generators Lni

with ni < 0. We can

always (WLOG) write any such state as a linear combination of states of the form

L−n1 · · ·L−nk
|ψ〉 , 0 ≤ n1 ≤ · · · ≤ nk (2.8)

by using the Virasoro algebra to commute the generators past each other. All such states

are L0-eigenvectors; their weights are h +
∑k

i=1 ni = h + N , where the integer N is called

the level. States with level N ≥ 1 are called descendants, and the vector space generated

by linear combinations of the descendants (2.8) is called the Verma module Vh.
Starting with each primary state |ψ〉, an infinite tower of descendants fans out. The

number of independent states at level N is p(N), the number of integer partitions of N .

N

0

1

2

3

|ψ〉

L−1|ψ〉

L2
−1|ψ〉

L3
−1|ψ〉

L−2|v〉

L−1L−2|ψ〉 L−3|ψ〉

Each Verma module Vh furnishes a representation of the Virasoro algebra, but such a

representation may fail to be irreducible: it may contain nontrivial subrepresentations, and

these must be quotiented out before we proceed. To see this more explicitly, we endow Vh
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2.4 Various Kinds of CFTs 2 REPRESENTATIONS OF THE VIRASORO ALGEBRA

with an inner product in accord with the requirement L†n = L−n:(
L−n1 · · ·L−nr |ψ〉 , L−m1 · · ·L−ms |ψ〉

)
= 〈ψ|Lnr · · ·Ln1L−m1L−ms|ψ〉 , (2.9)

where the bras of primary states satisfy 〈ψ|L0 = 〈ψ|h and 〈ψ|Ln = 0 for all n < 0. In this

inner product, descendants of different levels are automatically orthogonal.

If Vh has a nontrivial subrepresentation, then it contains a full-fledged submodule Vχ
generated by a primary state |χ〉 that is, at the same time, a descendant of |ψ〉. (This only

happens when there is some definite relation between c and h.) Primaries that are also

descendants are called null vectors, because they have zero norm: 〈χ|χ〉 = 0.7 Moreover,

every descendant of |χ〉 has vanishing norm as well, so the whole Verma module Vχ is

orthogonal to the rest of Vh. The quotient Rh = Vh/Vχ gets rid of these null states by

identifying any two states in Vh that differ by a null vector in Vχ, and the inner product

induced on Rh from (2.9) is positive-definite. What remains, after all necessary quotients

have been performed, is a bona fide irreducible representation of the Virasoro algebra.

Let us summarize what we have learned about the CFT Hilbert space. Each primary

state |ψ〉 ∈ HCFT, labeled by its weights (h, h), generates a Verma module Vh,h = Vh ⊗ V ′h
by the action of strings of Virasoro generators L−ni

. If the modules Vh or V ′
h

are reducible,

we find all of their null vectors and quotient out the submodules they generate, leaving us

with irreducible representations Rh and R′
h
. The Hilbert space HCFT is then a direct sum,

running over every primary state in the CFT, of these irreducible representations:

HCFT =
⊕
h,h

mh,h

(
Rh ⊗R′h

)
, (h, h) ∈ S. (2.10)

The spectrum of the CFT is the list S of the conformal weights of all primaries in the

theory. The theory may contain either finitely or infinitely many primaries; either way, the

data in S is the minimal information necessary to reconstruct the Hilbert space.

2.4 Various Kinds of CFTs

Let us close this section by distinguishing various classes of conformal field theories:

• A CFT is unitary if HCFT has a positive-definite inner product where L0 + L0 is

self-adjoint. Only in unitary CFTs are all states normalizable, and only these CFTs

are physical. Every unitary CFT has c ≥ 0 and all weights h, h ≥ 0. (Unitarity was

assumed in our discussion above, and indeed we will consider only unitary CFTs.)

• A CFT is compact if its spectrum is real and discrete, and there if is a unique state

with ∆ = 0. This state is the vacuum |0〉, and its associated field is the identity 1.

7This does not signal a failure of certain descendants at some level to be linearly independent: |χ〉 is not
the zero vector. It is rather a failure of the “inner product” defined above to be positive-definite.
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3 CONFORMAL FIELDS AND CORRELATORS

The vacuum is PSL(2,C)-invariant, meaning that Ln |0〉 = 0 for all n ≥ −1.

• A CFT is rational if it has a finite number of primary states. It can be shown that in

rational CFTs, all conformal dimensions (as well as c) must be rational numbers.

• A rational CFT is a minimal model if it satisfies a few other assumptions. There is

an ADE classification of the minimal models, and they have all been solved exactly.

My favorite minimal model is the trivial CFT, which has c = c = 08 and whose spectrum

consists solely of the vacuum |0〉, which has h = h = 0. The CFT Hilbert space is a single

irreducible representation built from the vacuum and its Virasoro descendants. Unitarity

(i.e. getting rid of the null states) forces this to be the trivial representation, so in fact there

is only one physical state. The complete list of all correlators is
〈∏N

i=1 1(zi)
〉

= 1.

A few nontrivial examples of 2D CFTs include the free boson (real, complex, compact);

the free fermion (ditto, with various choices of boundary conditions); minimal models such as

the Ising, Lee–Yang, and Potts models; Liouville theory; WZW models; holographic CFTs;

and more. We will not discuss any of these, except for some AdS/CFT at the end.

3 Conformal Fields and Correlators

3.1 Radial Quantization

The theory we have been describing lives on the flat Minkowski plane, where time runs

upward and the spatial direction is horizontal. But the infinite extent of space will produce

IR divergences in the theory, and the theory is easier to formulate in Euclidean signature.

Therefore we Wick rotate the metric and compactify the spatial direction: the result is the

(Euclidean) cylinder R × S1. The cylinder can be parametrized by the complex coordinate

ζ = t + ix, where x ∼ x + L, and the conformal transformation z = e2πζ/L “explodes” the

cylinder onto the plane. On the z-plane, time runs radially outward: the far past (t −→ −∞)

is at the origin (z = 0), and the far future (t −→ +∞) is at infinity (z =∞).

8CFTs with c = 0 arise in string theory, where conformal symmetry appears as a gauge symmetry. One
requires c = 0 to cancel a Weyl anomaly, and this ultimately fixes the number of spacetime dimensions.
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The idea of radial quantization is that, after performing these manipulations, the

Hamiltonian—which generates time translations—corresponds to the dilation operator. But

as we have seen, this is precisely what H = L0 + L0 does. Thus radial quantization is

what motivates our earlier assumptions on the boundedness and self-adjointness of H, and

explains why we wanted to treat scaling eigenvalues as energies. Moreover, the fact that the

constant-time slices are now concentric circles makes our original argument in favor of the

state-field correspondence more concrete. We often say that the entire CFT Hilbert space

lives at the origin: this is the basic fact that allows CFT states to define fields.

N.B. In QFT, fields are operator-valued distributions on spacetime, so it is often useful

to think of the map |ψ〉 ←→ Oψ(z, z) as an operator-state correspondence. Note that

in any QFT with a vacuum state |0〉, any operator Oψ defines a state by creating it from

the vacuum: |ψ〉 ≡ Oψ(0) |0〉. It is only in CFT that the map goes the other way too.

3.2 Fields and the Stress Tensor

By the operator-state correspondence, we allow the Virasoro algebra to act on fields as well as

on states, and we distinguish between primary and descendant fields, which correspond

to primary and descendant states, respectively. A primary field Oh,h obeys

L0Oh,h = hOh,h, L0Oh,h = hOh,h, and LnOh,h = LnOh,h = 0 for all n > 0. (3.1)

It is possible to show, using the tools we are about to introduce, that primary fields transform

covariantly under any local conformal transformation z 7→ w(z), as follows:

Oh,h(z, z) 7−→ Oh,h(w,w) =

(
dw

dz

)−h(
dw

dz

)−h
Oh,h(z, z). (3.2)

Fields that satisfy (3.2) only for global conformal transformations are called quasi-primary,

and their associated states are primary with respect to the global algebra PSL(2,C).

We wish to understand the action of the Virasoro algebra on the fields: that is, we want to

describe the z-dependence of LnO|ψ〉(z) = OLn|ψ〉(z). In accordance with our interpretation

of L−1 and L−1 as the generators of translations, we postulate that for any field O,

L−1O(z, z) =
∂

∂z
O(z, z), L−1O(z, z) =

∂

∂z
O(z, z). (3.3)

We can then work out the z-dependence of Ln by applying (3.3) to the field LnO:

∂

∂z

(
LnO(z, z)

)
= L−1LnO(z, z) = −(n+ 1)Ln−1O(z, z) =⇒ ∂Ln

∂z
= −(n+ 1)Ln−1. (3.4)

These relations show how the basis of Virasoro generators, in their action on fields, changes
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3.2 Fields and the Stress Tensor 3 CONFORMAL FIELDS AND CORRELATORS

from point to point. If we define the stress tensor or energy-momentum tensor by

T (w) =
∑
n∈Z

Ln
(w − z)n+2

⇐⇒ Ln =
1

2πi

∮
dw (w − z)n+1T (w), (3.5)

then all of the relations (3.4) are encapsulated in the equations
∂

∂z
T (w) =

∂

∂z
T (w) = 0.

Thus we have the answer to our question about how LnO depends on z:

T (w)O(z) =
∑
n∈Z

(LnO)(z)

(w − z)n+2 ⇐⇒ (LnO)(z) =
1

2πi

∮
dw (w − z)n+1T (w)O(z). (3.6)

When O is primary, it is annihilated by the positive Virasoro modes. In this case, (3.6)

tells us—by Cauchy’s integral formula—that descendant fields are essentially derivatives of

primary fields: LnO ∼ ∂nO. Using (3.3) and the definition of a primary field, we find

T (w)O(z) =
hO(z)

(w − z)2 +
∂O(z)

(w − z)
+ (regular). (O primary) (3.7)

This is our first example of an operator product expansion (OPE). Here is another one; it

follows directly from the mode expansion (3.6) and by using the Virasoro algebra:

T (w)T (z) =
(c/2)1

(w − z)4 +
2T (z)

(w − z)2 +
∂T (z)

(w − z)
+ (regular). (3.8)

By comparing this expansion to the OPE of T with a primary, we see that T is not primary.

It is, however, quasi-primary, and is in fact a descendant at level 2 of the identity field:

T (z) = L−21(z). It has dimension and spin 2: (h, h) = (2, 0) =⇒ ∆ = ` = 2.

The stress tensor is perhaps the single most important object in 2D CFT. Its definition

(3.5) can be viewed as a Laurent expansion in w, convergent as z approaches w, whose modes

are the Virasoro generators.9 A few other important facts about it follow:

• T (z) combines with its anti-chiral twin T (z) to form a 2 × 2 traceless, symmetric,

divergence-free matrix Tµν with nonzero entries Tzz = T (z) and Tzz = T (z). It is the

Noether current for Virasoro symmetry, and the “conformal charge” is

Q[ε(z, z)] =
1

2πi

∮
dz T (z)ε(z) +

1

2πi

∮
dz T (z)ε(z). (3.9)

These charges generalize the angular momenta and boosts of the Lorentz group.

9We chose to use the Virasoro algebra to construct the stress tensor, but we could have begun by assuming
the existence of a stress tensor with certain properties, and shown that the modes Ln in (3.5) satisfy the
Virasoro algebra. The point is that T (w) knows everything about conformal symmetry in a 2D CFT.
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• Under conformal transformations z 7→ w(z), the stress tensor transforms to

T (w) =

(
dw

dz

)−2[
T (z)− c

12
{w, z}

]
, {w, z} =

w′′′(z)

w′(z)
− 3

2

(
w′′(z)

w′(z)

)2

. (3.10)

The bizarre-looking term {w, z} is a Schwarzian derivative. Since it is proportional to

c, one may view it as a quantum correction. Indeed, {w, z} vanishes when w(z) is a

Möbius transformation, so it measures the failure of w(z) to be globally conformal.

• Consider the transformation (3.10) with w(z) = −1
z
. One can check that {w, z} = 0,

so we find that T (−1/z) = z−4T (z). If we demand that T (0) must be regular, then we

see that T (z) is not only holomorphic at infinity, but decays at large z as z−4.

3.3 Correlation Functions

We are now ready to discuss the central objects of 2D CFT. To N fields O1(z1), ...,ON(zN)

and distinct points z1 6= · · · 6= zN , we associate a number called the correlator or N-point

function 〈O1(z1) · · · ON(zN)〉. Correlators must be single-valued and meromorphic in c, the

weights (hi, hi), and the positions zi. We assume that fields commute inside correlators, so

〈O1(z1)O2(z2)〉 = 〈O2(z2)O1(z1)〉. Correlators are also linear in the fields, so that

∂

∂z1

〈
O1(z1) · · · ON(zN)

〉
=

〈
∂

∂z1

O1(z1) · · · ON(zN)

〉
. (3.11)

By linearity and because descendants can be built from primaries, it is enough to compute

the correlators of primary fields. To understand and constrain their behavior, we will insert

the stress tensor into the correlator. For a string of N primaries Oi(zi), define

GN =

〈
N∏
i=1

Oi(zi)

〉
, GN(w) =

〈
T (w)

N∏
i=1

Oi(zi)

〉
. (3.12)

By the TO OPE (3.7), the effect of inserting T (w) is to apply a differential operator:

GN(w) =
N∑
i=1

[
hi

(w − zi)2 +
1

(w − zi)
∂

∂zi

]
GN . (3.13)

Now recall that at large w, we have T (w) ∼ w−4. It follows that the coefficients at w−1, w−2,

and w−3 in the expansion of GN(zi, w) around w =∞ must all vanish. In this way we obtain

three differential equations, known as the Ward identities, satisfied by the correlator:

N∑
i=1

∂

∂zi
GN =

N∑
i=1

(
zi
∂

∂zi
+ hi

)
GN =

N∑
i=1

(
z2
i

∂

∂zi
+ 2hizi

)
GN = 0. (3.14)
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As examples, let us solve the Ward identities for a correlator of N = 0, 1, 2, 3 primaries.

• N = 0: The Ward identities read 0 = 0. The zero-point function 〈 · 〉, sometimes called

the sphere partition function, must be a constant which we may set to 〈 · 〉 = 1.

• N = 1: The Ward identities are overdetermined; they give

∂

∂z
〈O(z)〉 = h〈O(z)〉 = 0. (3.15)

Thus either 〈O(z)〉 = 0, or else h = 0 and O is the identity field with 〈1(z)〉 = 1.

• N = 2: There are still more Ward identities than unknowns. We will find a unique

solution, plus a constraint on h1 and h2. The Ward identities are equivalent to

(z1 − z2)(h1 − h2)
〈
O1(z1)O2(z2)

〉
= 0,

∂

∂z1

〈
O1(z1)O2(z2)

〉
= − ∂

∂z2

〈
O1(z1)O2(z2)

〉
= − 2h1

z1 − z2

〈
O1(z1)O2(z2)

〉
.

(3.16)

The first equation shows that for z1 6= z2, 〈O1(z1)O2(z2)〉 = 0 unless h1 = h2. The

second equation has solution 〈O1(z1)O2(z2)〉 = A(z1 − z2)−2h, with A a constant that

we often set to 1. The same story holds anti-holomorphically, so in summary

〈
O1(z1)O2(z2)

〉
=

δ12

|z1 − z2|−2∆
, δ12 = δh1h2δh1h2 . (3.17)

The absolute value notation introduced above is peculiar to 2D CFT: it is meant to be

read “|f(z)| = f(z)f(z),” in accordance with holomorphic factorization.

• N = 3: We have as many equations as unknowns, so we will find a unique solution for

G3(z1, z2, z3) with no constraints on the hi. After some work, one obtains〈
O1(z1)O2(z2)O3(z3)

〉
= C123|z12|∆3−∆1−∆2|z13|∆2−∆1−∆3|z23|∆1−∆2−∆3 , (3.18)

where we have introduced the shorthand zij = zi − zj. The constant C123 cannot be

set to 1, because the OPE reduces this correlator to a sum of two-point functions that

have already been normalized. As we will see, the Cijk are really OPE coefficients.

For N ≥ 4, we run out of luck: there are more unknowns than Ward identities to constrain

them. For instance, for N = 4, the general solution to the Ward identities is

G4(z1, z2, z3, z4) = z−2∆1
12 z∆1−∆2−∆3+∆4

23 z−∆1−∆2+∆3−∆4
24 z∆1+∆2−∆3−∆4

34 F1234(z),

F1234(z) =
〈
O1(z)O2(0)O3(∞)O4(1)

〉
, z =

z12z34

z13z24

.
(3.19)
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Here z is called the conformal cross-ratio, and F (whose form can be deduced from the

transformation law (3.2)) is a function that the Ward identities cannot determine. More

generally, for an N -point function, the Ward identities leave unfixed a function of N − 3

cross-ratios. The space of solutions to the Ward identities is quite interesting: we will now

describe a particular basis of their solutions whose elements we call conformal blocks.

4 The OPE and Crossing Symmetry

4.1 The Operator Product Expansion

Our main tool for computing correlators is the OPE, introduced as an axiom in (1.3) and

exemplified in calculations in (3.7) and (3.8). There are three main ways to understand it:

1. As a reflection of Wick’s theorem: In QFT, Wick’s theorem relates different

operator product orderings. In radial quantization, we often start with radial (“time”)

ordering and want to convert to normal-ordered products, which are free of divergences.

The singular part of the OPE of two operators O1 and O2 is precisely the difference

R{O1(z1)O2(z2)}− :O1(z1)O2(z2) : between the two orderings of the products.10

2. As a resolution of the identity: The OPE is a consequence of the state-field

correspondence and the identity 1 =
∑

ψ |ψ〉〈ψ|, where ψ runs over a basis of HCFT:

Oi(z1)Oj(z2) =
∑
ψ

O1(z1)O2(z2) |ψ〉〈ψ| =
∑
ψ

〈ψ|O1O2〉Oψ(z2). (4.1)

Here we have replaced the field O1O2 by its corresponding state, and the state |ψ〉 with

its corresponding field: note the resemblance to (1.3)! We often call Oψ the “internal”

or “exchanged” operator; the terminology will become clear soon.

3. As a Laurent expansion for CFT operators: If we apply the Ward identities (or

insert T ) to both sides of the OPE (1.3), it can be shown that in fact

Ck
ij(z1, z2) = Ck

ij|z1 − z2|∆k−∆i−∆j . (4.2)

Organizing the OPE by the contribution of each primary in the spectrum, we write

Oi(z1)Oj(z2) =
∑

k primary

Ck
ij|z1 − z2|∆k−∆i−∆j

(
Ok(z2) +O(z1 − z2)

)
. (4.3)

where we have absorbed the contributions of descendants into the term O(z1− z2). In

this way the coefficient at each primary Ok entering the OPE of Oi and Oj is either

10The necessity of ordering originates in Lorentzian signature. In Euclidean signature, one is free to choose
any point as the origin for radial quantization, and in this way one obtains different radial orderings.
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suppressed or made more singular by powers of z12. Moreover, one can show that Ck
ij is

precisely the 3-point normalization constant Cijk by computing 〈Oi(z1)Oj(z2)Ok(z3)〉
using the OiOj OPE and comparing this with the known result (3.18).

And so, at long last: The minimal input data that uniquely determines a CFT consists

of the spectrum S = {(hi, hi)} of primary weights; the central charges c, c; and the OPE

coefficients Ck
ij. Given this data, one can use the OPE to compute all of its correlators.

4.2 The Crossing Equation

Let us use the OPE to continue the calculation (3.19) of the four-point function. The O1O2

OPE gives an expansion, organized again by primaries, that converges in the disk |z| < 1:〈
O1(z)O2(0)O3(∞)O4(1)

〉
=
∑
∆∈S

C12∆|z|∆−∆1−∆2

(〈
O∆(z)O3(∞)O4(1)

〉
+O(|z|)

)
=

=
∑
∆∈S

C12∆C∆34|z|∆−∆1−∆2

(
1 +O(|z|)

)
.

(4.4)

The function 1 +O(|z|) above captures the OPE contributions of all descendants of O∆(z).

The contributions of the L−n and L−n holomorphically factorize, so we can write it as

F (s)
h (z)F (s)

h
(z), where (s) stands for “s-channel.” The Virasoro conformal block F (s)

h (z)

is the OPE contribution of the Verma module Vh to the four-point function F1234(z).11 It is

analytic in z, c, hi, and h, and (in principle) entirely determined by conformal symmetry.12

The associativity of the OPE allows us to fuse together any two fields in the four-point

function. For example, the O1O4 OPE gives an expansion convergent in |1− z| < 1:〈
O1(z)O2(0)O3(∞)O4(1)

〉
=
∑
∆∈S

C∆14C23∆|1− z|∆−∆1−∆4

(
1 +O(|1− z|)

)
. (4.6)

The function 1 + O(|1− z|) = F (t)
h (z)F (t)

h
(z) factorizes as well; the subscript (t) stands for

“t-channel.” Of course, by the commutativity of fields inside correlators, the O1O4 OPE

could have been an O1O2 OPE if we had relabeled the fields and their insertion points. It

follows that the s-channel blocks and the t-channel blocks are related by

F (t)
h (c, h1, h2, h3, h4; z) = F (s)

h (c, h1, h4, h3, h2; 1− z).

11Warning: not everyone defines the Virasoro blocks the same way! It is also common to normalize the

blocks so that F (s)
h (z) = zh−h1−h2

(
1 +O(z)

)
, so as to make their behavior under scaling more manifest.

12Actually, the blocks are only locally analytic in z: they can have nontrivial monodromies when fields are
moved around each other. For instance, permuting O1 and O2 has the following effect:

F (s)
h (c, h1, h2, h3, h4; z) = eiπ(h−h1−h2)(1− z)−h1−h2+h3−h4F (s)

h

(
c, h2, h1, h3, h4;

z

z − 1

)
. (4.5)
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And now comes the crucial insight: The s-channel and t-channel expansions (4.4) and

(4.5) must agree with each other where they both converge. We therefore obtain〈
O1(z)O2(0)O3(∞)O4(1)

〉
=
∑
∆∈S

C12∆C∆34|z|∆−∆1−∆2F (s)
h (z)F (s)

h
(z) =

=
∑
∆∈S

C∆14C23∆|1− z|∆−∆1−∆4F (t)
h (z)F (t)

h
(z).

(4.7)

This is the crossing equation, and the demand that all CFT correlators satisfy it is

called crossing symmetry. Crossing encodes the associativity of the OPE, and can be

represented by the following diagram showing how the OPE “contracts” the operators:

〈O1O2O3O4〉 =
∑
∆∈S

C12∆C∆34

∣∣∣∣∣∣∣∣
2

∆
3

1 4

∣∣∣∣∣∣∣∣
2

=
∑
∆∈S

C23tCt41

∣∣∣∣∣∣∣∣∣∣
2

∆

1

3

4

∣∣∣∣∣∣∣∣∣∣

2

. (4.8)

The similarity of (4.8) to Feynman diagrams justifies the terminology of “internal” operators,

“external” dimensions, and so on. The notion that we are studying scattering amplitudes

explains why conformal blocks are sometimes called conformal partial waves, in analogy

to how spherical harmonics form the building blocks of the theory of atomic orbitals.

Regarding the conformal blocks as known objects, the crossing equation gives an infinite

set of relations that are quadratic in the OPE coefficients. Their non-linearity in the Cijk is

part of what makes the conformal bootstrap so hard. The blocks themselves are also hard to

compute, because they typically involve infinite sums. There are, however, efficient recursion

relations due to Zamolodchikov that can be viewed as series expansions of the blocks, either

in large c or in large ∆, that take advantage of their analytic structure in c and ∆.

4.3 An Example from AdS/CFT

We conclude with an example close to my heart. Suppose that c is very large, and consider

the “heavy-light” (HHLL) four-point function of two scalar primaries OL and OH :

Gα(z) =
〈
OH(∞)OL(1)OL(z)OH(0)

〉
, ∆L � ∆H =

c

12

(
1− α2

)
. (4.9)

This correlator models the two-point function of a light probe field in a heavy background

state |OH〉. In AdS3/CFT2, OH represents a heavy object in AdS13 that causes the bulk

geometry to backract, while OL represents a free scalar field propagating on the background

created by OH . We might be interested in how OH affects the physics of light probes; or

13This could be either a conical defect or a BTZ black hole, depending on the value of the “thermal”
parameter α. If α ∈ (0, 1), then ∆H < c

12 is a defect, while if α ∈ iR, then ∆H > c
12 is a black hole.
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more precisely, what effect ∆H has on the behavior of Gα(z) near z = 1.

The OPE is uniquely suited to such questions. Let’s look at the t-channel OPE, which

brings the two light operators together and probes the four-point function near z = 1:

Gα(z) =
∑
∆∈S

C∆LLCHH∆|1− z|∆−2∆LF (t)
h F

(t)

h
= |1− z|−2∆L

∣∣∣F (t)
0 (z)

∣∣∣2 + · · · . (4.10)

The t-channel blocks F (t)
h (z) are analytic at z = 1, so the most singular contribution to

the OPE is carried by the primary with the smallest value of ∆—the identity field. (This

phenomenon is known as vacuum block dominance.) In fact the t-channel blocks are

known explicitly in the HHLL limit c −→∞ with hL/c −→ 0 and hH/c fixed:

F (t)
h (z) ≈ z(α−1)hL(1− z)2hL

(
1− zα

α

)h−2hL

2F1

(
h, h; 2h; 1− zα

)
. (4.11)

Here 2F1 is the Gauss hypergeometric function, the most beautiful function there is. The

vacuum block is obtained by setting h = 0, and we find the following singular behavior:14

Gα(z) ≈ |z|(α−1)∆L

∣∣∣∣1− zαα

∣∣∣∣−2∆L

= |1− z|−2∆L

(
1 +

∆L∆H

c
|1− z|2 +O(|1− z|4)

)
. (4.12)

Thus we see explicitly that the presence of the heavy state modifies the two-point function

of the light field by introducing extra subleading divergences as z −→ 1.15

Naturally, less can be gleaned from the s-channel OPE. The expansion is significantly

more complicated, in part because we do not know the spectrum or the OPE coefficients.

Nevertheless, crossing tells us that the CFT must arrange itself in such a way that the

asymptotic behavior of (4.4) matches the divergence structure of the vacuum block.

FIN .

14This cannot be the full four-point function—it has the wrong analytic structure away from z = 1—but
it is accurate enough for us to find the corrections to 〈OL(1)OL(z)〉 incurred by the presence of OH .

15Remarkably, this result can be reproduced in the bulk by computing the length of a geodesic anchored
at the two boundary points 1 and z. The bulk geometry changes in response to the heavy object created by
OH , and the way this affects the geodesic length precisely reflects the CFT calculation above.
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